Electromagnetic Radiation (Light) + Types of Spectra Lecture outline -- 1

Reading: sections 7.1 through 7.3 in Astronomy Notes

Vocabulary terms used:

electromagnetic radiation—a form of energy made of oscillating electric and magnetic fields. It is a fancy word for "light". Includes (in order of *increasing* energy) radio, infrared, visible light (optical), ultraviolet, X-rays, gamma rays. All forms travel at *same* speed in empty space.

wavelength—the distance between two crests or two troughs of a wave.

frequency—the number of wave crests that pass a point every second. Measured in **hertz** (Hz).

For electromagnetic radiation, the frequency is inversely proportional to the wavelength. photon—a distinct "chunk" or particle of electromagnetic energy.

intensity—the *number* of waves or photons reaching your detector every second. It is *NOT* the energy of the light wave or photon.

temperature—a measure of the random motion energy of the particles in a gas, liquid, or solid.

spectrum—display of the intensity of light at different wavelengths or frequencies.

continuous spectrum—also called thermal spectrum—a spectrum that has energy at all wavelengths. Produced by solids, liquids, and dense (high-pressure) gases.

Wien's law—equation that relates the temperature of a thermal source to the wavelength of peak emission intensity: $\lambda_{peak} = 2.9 \times 10^6$ nanometers / temperature in Kelvin.

emission line—bright line in a spectrum that is produced by a hot, thin (low-pressure) gas. Made by an electron jumping down closer to the nucleus.

absorption line—dark line in a continuous spectrum that is produced by a cool, thin (lowpressure) gas. Made by an electron jumping up farther from the nucleus.

Outline

Electromagnetic radiation is made of ______ fields and ______ fields. Direction of their oscillation _____; direction wave moves Forms of light (see definition above — memorize the order!)

Properties of electromagnetic radiation

- 1. Travels through ______. Why important ______.

 2. Speed of ______ forms of electromagnetic radiation is _______ in empty space.
- 3. Definition of wavelength ; symbol for wavelength

Rainbow made of

Frequency = speed of wave / _____ (see definition above)

Frequency vs. wavelength

"Bluer" light: _____ wavelength, _____ frequency, _____ energy "Redder" light: _____ wavelength, _____ frequency, _____ energy

Light as a photon

Intensity vs. energy of light _____

Types of Spectra

Continuous (thermal) spectrum is and is produced by
Thermal spectrum depends on only.
Chunk of solid lead and same-sized chunk of solid iron <i>at the same temperature</i> will have spectrum.
How color depends on temperature:
very hot object has color, cool object has color
Example of Wien's law
Hotter objects are and than cooler objects
Spectral lines produced by
Emission lines produced by
Absorption lines produced by and require in the background.
Pattern of spectral lines depends on
Why the <i>pattern</i> of lines must be used and not just one line

Bohr Atomic Model and Doppler Effect Lecture outline -- 1

Reading: sections 7.4 through 7.6 in Astronomy Notes

Vocabulary terms used:

- **electron**—negatively-charged subatomic particle that moves around the nucleus in specific energy levels. It has about 1800 times less mass than the proton and neutron.
- **proton**—positively-charged subatomic particle that is found in the nucleus of an atom. It has about 1800 times more mass than its negatively-charged electron counterpart.
- **neutron**—subatomic particle with zero charge (neutral charge) that is found in the nucleus of an atom. It is slightly more massive than the positively-charged proton.
- **element**—a substance that cannot be decomposed by chemical means into simpler substances. All atoms of an element have the same number of protons in the nucleus.
- **isotope**—a sub-group of an element in which the atomic nucleus has the same number of neutrons, as well as, the same number of protons. All of the atoms of an element will have very nearly the same chemical properties, but the isotopes can have very different *nuclear* properties.
- **ground state**—the lowest energy state of an atom—all of the electrons are as close to the nucleus as possible.
- **doppler effect**—an apparent change in the wavelength of energy produced by an object that is caused by the object's motion towards or away from the observer (along the line of sight). In astronomical spectra, the doppler effect is seen in the shifting of spectral lines.
- **blueshift**—the shift of spectral lines from an object to shorter wavelengths because the object is moving *toward* the observer. The greater the speed of the object, the greater the blueshift will be.
- **redshift** the shift of spectral lines from an object to longer wavelengths because the object is moving *away from* the observer. The greater the speed of the object, the greater the redshift will be.

Outline

Bohr's model of the atom	
Positively-charged particles in the nucleus	
Neutral particles in the nucleus	
Negatively-charged particles moving around the nucleus	
Where the negative charges can be found	
Every type of atom (=) has	
Every type of atom produces	
Same unique pattern for all atoms of a type and laws of nature	
Three basic rules of atoms: 1. Where electrons can be found	
2. Which energy orbits have lower energy	
3. Desired state of an atom	

Bohr Atomic Model and Doppler Effect Lecture outline -- 2

How atoms produce emission and absorption lines
The total of + = always.
What happens to the electron when the atom <i>absorbs</i> light (photon) energy
What happens to the electron when the atom <i>emits</i> light (photon) energy
Big jump of electron produces spectral line of wavelength Small electron jump produces wavelength spectral line Photon energy =
Why spectral lines of only specific wavelengths produced
Why absorption lines pattern = emission lines pattern
Emission line example
Absorption line example What happens to photons with the wrong energy
Atom with energy levels at 3 eu, 7 eu, 8 eu can have emission lines at energies
Atom with energy levels at 2 eu, 10 eu, 15 eu can absorption lines at energies
Doppler Effect
How wavelengths of light can be changed
Direction object is moving if observer sees blueshift Direction object is moving if observer sees redshift
How determine speed of object Greater wavelength shift means
How radar guns work

Why spectral lines are used to measure doppler shifts