Bohr atom

Chapter index in this window —   — Chapter index in separate window

This material (including images) is copyrighted!. See my copyright notice for fair use practices. Select the photographs to display the original source in another window.

Scientists have had the technology to observe discrete spectra since the beginning of the 19th century. They had to wait over a hundred years, though, for an explanation of how the discrete spectra were produced. They knew that it was produced by atoms and that atoms had negative and positive charges in them. Some models of the atom were similar to our current one: the positive charges are concentrated in a central nucleus with the negative charges swarming around it, but the atoms should be unstable. As the negative charges (called electrons) move around the nucleus, they should radiate light and spiral into the nucleus in about 10-16 second. This is obviously contradicted by common experience!

Niels Bohr Niels Bohr (lived 1885--1962) provided the explanation in the early 20th century. He said that the electron can be only found in energy orbits of a certain size and as long as the electron is in one of those special orbits, it would radiate no energy. If the electron changed orbits, it would radiate or absorb energy. This model sounds outlandish, but numerous experiments have shown it to be true.

In Bohr's model of the atom, the massive but small positively-charged protons and massive but small neutral neutrons are found in the tiny nucleus. The small, light negatively-charged electrons move around the nucleus in certain specific orbits (energies). In a neutral atom the number of electrons = the number of protons. The arrangement of an atom's energy orbits depends on the number of protons and neutrons in the nucleus and the number of electrons orbiting the nucleus. Because every type of atom has a unique arrangement of the energy orbits, they produce a unique pattern of absorption or emission lines.

structure of hydrogen and helium
Select here for an enlargement of the spectra.

All atoms with the same number of protons in the nucleus are grouped together into something called an element. Because the atoms of an element have the same number of protons, they also have the same number of electrons and, therefore, the same chemical properties. For example, all atoms with one proton in the nucleus have the same chemical properties and are called Hydrogen. All atoms with two protons in the nucleus will not chemically react with any other atoms and are known as Helium. The atoms called Carbon form the basis of life and have six protons in the nucleus. In the figure below, atom (a) is Hydrogen, atom (b) is Helium, atoms (c), (d), and (e) are Lithium.

hydrogen, helium, and lithium atoms and ions

Elements are sub-divided into sub-groups called isotopes based on the number of protons AND neutrons in the nucleus. All atoms of an element with the same number of neutrons in the nucleus are of the same type of isotope. An element's isotopes will have very nearly the same chemical properties but they can behave very differently in nuclear reactions. For example, all of the isotopes of the element Hydrogen have one electron orbiting the nucleus and behave the same way in chemistry reactions. The ordinary Hydrogen isotope has 0 neutrons + 1 proton while another Hydrogen isotope called Deuterium has 1 neutron + 1 proton and another Hydrogen isotope called Tritium has 2 neutrons + 1 proton in the nucleus. Tritium is radioactive---its nucleus spontaneouly changes into another type of nucleus. In the figure above, atoms (c), (d), and (e) are different isotopes of the same element called Lithium.

Most atoms in nature are neutral, the negative charges exactly cancel the positive charges. But sometimes an atom has a hard collision with another atom or absorbs an energetic photon so that one or more electrons are knocked out of the atom. In some rare cases, an atom may temporarily hold onto an extra electron. In either case, the atom has an extra positive or negative charge and is called an ion. For example, the carbon ion C+ has 6 protons and 5 electrons and the iron ion Fe2+ has 26 protons and 24 electrons. Because the number of electrons are different, an ion of an element will behave differently in chemical reactions than its neutral cousins. In the figure above atom (d) is a Li+ ion [compare it with atom (c) or (e)].

In order to explain discrete spectra, Bohr found that atoms obey three basic rules:

  1. Electrons have only certain energies corresponding to particular distances from nucleus. As long as the electron is in one of those energy orbits, it will not lose or absorb any energy. The energy orbits are analogous to rungs on a ladder: electrons can be only on rungs of the ladder and not in between rungs.
  2. The orbits closer to the nucleus have lower energy.
  3. Atoms want to be in the lowest possible energy state called the ground state (all electrons as close to the nucleus as possible).

previousGo back to previous section -- next Go to next section

Go to Astronomy Notes home

last updated: January 10, 2013

Is this page a copy of Strobel's Astronomy Notes?

Author of original content: Nick Strobel